
I

where e denotes the vector 
~1~

3
N ’ xl+lf

3
N.,l •.

~~~

The solution of (3.3) involves the solution of a system of nonlinear

equations. By taking h •.c/N’~,N 16 we get an approximate solution*

f(x) a 
~ 

1k5 ’~~°~~~ 
($(x) — log x)

k——16

which is accurate to 5 decimals on [0,”)

Ex.3. u — u  , 0 < x < 1  , t > 0( x x  t

(3.4) 1u(x ,0) a sin wx , u(0 ,t) a u(1,t) — 0

In order to get zero boundary conditions, we set

(3.5) u a ~ + sin(ltx)e
_4t

This yields the problem

(
V__ — V

~ 
a (w2_4)sin(wx)e 4t, 0 < x < 1, t > 0

(3.6)
~v(x,0) — 0, v(0,t) — v(l,t) a 0

We solve this by taking our approximating basis functions to be

Sk (x) a x(l—x)S(k,h)oO(x), $(x) • log(x/( 1—x) ]
(3.7) {* * *

Set) — t S(t,s).~ (t) , • Ct) a log

The problem (3.6) may now readily be reduced to a matrix problem, by

proceeding as for (3.2) above. Setting

*The solution f satisfies f(s) ~~ Ae~~ as x-~~ ,and consequently, it

may be necessary, on some computers, to replace ~~ by 2 , where-w
<< N~ in order to avoid underflo~..

-
~~~~~ - -~~— ~~~~~~~~~



V..N N V..N,...N+l ... v~~~ 
-

... ~~~~~~~~

(3.8) V a

V
)1,

_~~~1 • • •

(3.9) - _2hjli
m
(X(l_X)

~ ~~~~~~~~~~ ~~~ 
+ ~~~~~ (x.~ — 4 + 4 tanh 

~
-
~
) 

~ 
)

(3.10) C a 4 ( t ~~~(S1~~~,
L

J ~~~~ J ~~~~ • unit matrix, tk 
— ek~

(3.11) D — hA (x2(l x) 2) , (x~ 
a 4 + 4 tanh(kh/2))

(3.12) E — s~~ (t
2
) , (t~ 

a ~~ ) ,

F..N~~~+l . ..  P~~~ 
-

~~~~~~~~ • . .  F_~~11~

(3.13) F —

F N , -N F)1 , -N+l • . .

where

2
— (1! —4)sin(wxk)e

we arriv, at the matrix system

(3.14) D~ SV ÷ VC~~~ = F
c -

I ___ _ 
_ _ _ _ _  _ _ _ _ _ _



Eq. (3.14) may be solved by diagonalizing D ’
~~ and If

and U )1.P~~~1$ . . . $ I ~)1 denote the eigenvalues of D ’B

and CE 1 respectively, obtained by taking X~~pi5(and ZC~~~~
’ via

e.g. the method of Cojub and Retnsch [3], and if C — (gd]

Y — (y~~] — X ~~VZ~ then 
~k.L 

• g~~/(A~ + U t
)
~ 

and ! ii~.
3y taking h.’.75/N’~ q”.5/N4 

, Nal6 , we get an approximation
16 

*u(x.t) ~ e 
4
~sinwx + v S(k,h)o$(x)S(t,h).$ (t)

k, ——16

which is accurate to 4 dec. on [0,1] x (0,”]

Ex • 4
Uxx + — —1, (x,y) ~ S [0,1] x [0,1]

(3.15)

- u — 0 on as

Letting B and D be defined as in (3.9) and (3.11) we now get the

approximating matrix system

(3.16) ~~ U ’t- W~~~~~
’)T U

where U — Eu 1, H — (ha], h a • This may now be readily solved

via the diagonaliz:ion of P4~ . By taking N a 16, h 1..75/iY’Ive get an

approximate solution

16
u(x,y) ‘ u S(k ,h)o$(x)S(t,h)e$(y)

k, ——16

which is accurate to 5 dec. on S

- - - - - V .- -~~~ 
- - - *
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4. Error Analysis

For sake of simplicity , we shall restrict ourselves to th. simpler

case of the second order problem

(4.1) u” + f(x ,u) — 0, u(0) — u(l) a 0

The analysis for the case of other ordinary or partial differential

equations is somewhat more complicated, but may be carried out similarly.

Throughout this section a,C1,C2,...,C16 denote positive constants,

and h — (sd / CaN) 4]

In the notation of the previous sections, we take •(z) a log (z/ ( l— a)J ,

and we take tha domain of analyticity to be V a (z:Iarg[a#~ —z))I c d}

We shall assume that (4.1) has a.(locally) unique solution u0 which is

analytic and bounded in V and which satisf ies the inequality

(4.2) 1u0(x)I ~. C1x
0(l_x)a, 0 ~ x c 1

Definition 4.1. Let M(d,cs) denote the family of all functions v

that are analytic in V such that

v(0) — v(l) a O  -

(4.3) gv”( 3(V), g(x)v”(x)~ ~~C2x
1(l—x)°4 on (0,1)

gf(•,v)~~ 3(V) , g(x)f (x ,v (x ) ) I  ~.C3x ~(l—x)°~ on (0,1)

where

(4.4) g (x) a x( 1—x) .

We shall also assume that the solution of the Frechet derivative

problem

—•- . —



(4.5) 8”(x) + fu~~~
U(3I

~~
0(5) — v(x), 0(0) — 0(1) • 0

satisfies

(4.6) Ie(x)I~.c4IIA ’w II

for all u 6 M(d ,a) such that u—u01 ~ c where •H is defined

by

(4.7) I l f Il — sup If(x)I,
x~ (0 ,1)

where

(4.8) (A ’f)(x) — —
~~ 

C(x ,t ) f ( t)d t
• JO

and where for any x 6 (0,1J,

(1— x)t if 0~~~t~~~x

(4.9) G(x ,t) —

x(l—t) if x~~~t~~~1

Moreover , we shall assume that if I Iu—u01 I ~ c, then

(4.10) II(A ’f(t,u(t))}II £ C 5

Let us assume that we have found an approximate solution

N
(4.11) U

a
(X) a 

~ 
uk S(k,h).~(x) (a — 2)1 + 1)

k--N

by the method of the previous sect ions, and let us set

(4.12) m 
a u — U0

•‘

• .~~~~~
•t- 

~~~~-~-—~ - -



Then

(4 .13) 0 (x) + f u (
~ ~~~~~~~ 

— u (x) + f(x ,u (x) )

for some ~ between u0 and and therefore , by (4.5) and (4.6) ,

(4.14) I0 (x) I ~~C4J I u~ 
+ A~

f(.,u) JI

Now by Theorem 2 . 1 1 ,  we find , by taking Sk(x) —

a 4 + 4 tanh (kh/2) , that
3

1 g(xk)

• i:~”~ 
+ f(x,v(x))]Sk(x)dx ~ h •uCxk

[
~
1H(3tk) + f(xk,v(xk))J

(4.16) f v”(x)Sk(x)dx0

N “( )
a h £ j :(x ) ~~~ + ~~~~~~~~~~~~~~~~~~~~~~~ ~

6(2)
+ g(x )~‘(x1) —s—)

‘ h

in which the error of either term on the right—hand side of (4 .15) is

bounded by C6N
4e~~~

0
~ and the error of the right-hand side of

(4.16) is bounded by c7tfte
’
~~~ . By our process of solution, the

numbers Uk in (4.11) are determined such that
1$ 4(1) (2)

h 
~ 

U
j  

(
~4’ ~r 

+ (2g + g
~ ,/ •~

) ~k +

(4.17)

+ h 
~~~k”k~ 

• 0, k a _$
~ 
..)1.4,..•,N .



- —~~~ •~~-

Theorem 4.2: Let the numbers U
k 

(k —N,—N+1,...,N) be determined

by (4.17), and let um(x) be defined as in (4.11) . Then

(4.18) u~(x) 
- u0(x)I ~ C15N

312e~~
’ t 1

~~, 0 ~ x ~ i -

where u0 is the solution of (4.1).

Proof: In view of the errors in the approximations (4.15) and (4.16),

the solution of (4.17) is equivalent to finding a function v ~ M(d ,a) ,

such that

(4.19) 
•‘(xk~

1
~
”
~
”k
~ 
+ f ( X k,V(X

k
) ]a  j— , k • —N,—N+l,...,N, 4

where v(x.5) 
a u~, and where 

•

4
(4.20) I C~j ~ C8N e a 

, k — —N,—N+1,.. - ,N

Since v E M(d,a), it follows, for any t 
~ 
(0,1), that

a g(x)~
+ f(t,v(t))) —J~ •I(xk)

Ev
~
I(X

k) + f (xk.v(xk))]S(k,h)o$ft.)

(4.21)

— 
sin[s~(t)/hI ( ; (z) [ v”(s)+f(z v(z))~dz

2si J (•(z)_0 (t)JsintaO (z)/hJ

By multiplying (4.21) by •‘(t)
2
, taking A ’ of each side, and noting

that g(t)~ ’(t) a 1, we get

V(x) + (A~~f(t,v(t)))(x) — ~ ~~(v~ + f(xk,vk)]A k$’(t)2S(k.h).$(t)}(Z)
ka- k

• (4.22 ) 
a A 1 j$’(t)

2sin[ire(t)/hl I i(2)Iv ”~1?~~(* v(a))lds 
~~~~2vi ) [~(s)a~(t)Jsinfir~(z)/h)

V - .,,;- -

• — ~~~-r ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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Since •‘(t) a l/(t(l—t)J, it follows, by taking

t • (1 + tanh(u/2))/2, x — [1 + tanh (v/2))/2, and using (4.8) and

(4.9), that

I
1
(h,x) A~

1(~ ’ (t)
2sinc[{~(t)—kh}/h] Xx)

1w 1 — tanh(v/2) u—kba — J 1 — tanh(u/2) sincE h Idu

(4.23) —•

f 1 + tanh(v/2) u-kh
— J 1. + tanh (u/2) sincE h ]du

w

On the interval (—“,w], the function [l.-tanh(v/2)]/(l—tanh(u/2)]

increases monotonically from (1—tanh(v/2))/2 to 1 while on Iv,”],

the function (l+tanh(w/2)]/[l+tanh(u/2)] decreases monotonically

from 3. to (]+tanh(w/2)]/2 . For this reason , it may be shown by

a somewhat lengthy, but simple argument , that

(4.24) J I 1(h,x) I  ~ 4sh .

Similarly if x e (0 ,1] and a E aV , we can show that

(4.25) 112th,x)I IA
—
1{;~~~,~~~~~~~~

1”1}(x)I ~~~~~~

since Ia •(z) —

• By means of (4.19) , (4 .22) and (4.23) , Eq. (4.21) nov yields

v(x) + (A~~f(t.v(t)))(x))

N k i  g

(4.26) 
II 1(h ,x) I  

kIN h + 11
(h,x)I 

I~I’N ~
-~I[v~ +

+ ‘t (h )I ( g(a)[v”(s)+f(z.v(s))l dz
‘ 2 ‘~~ ‘ J ‘ sin(v$(z)/h]

aD

- V— V ~VV ~V- -V~ ~ - V - - --2~~~~ -- - ~~~~~~~~ -
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Using the bounds given in (4 .20) and (4.24) , we bound the first sum

on the right—hand side of (4.26) by c9~~
/2e idaN)4 Using (4.3) and

(4.24), and recalling that 5k — 4 + 4 tanh(kh/2), we bound the second

sum on the right—hand side of (4.26) by ~10e 
sdaN)4 ; and using

(4.25) and the fact that Isin(w$(z)/h]I > sinh(wd/h) if a E

we bound the integral term on the right—hand side of (4 .24) by

2h N(g(v” + f(.,v)])/(dsinh(wd/h)] a C11N~~e
’
~~~~ . Hence for all

x 6(0,1),

(4.27) Iv(x) + (A f(t,v(t))}(x) I £C12N e

Since v €- M(d,a), it follows from the first and second of (4.3)

that -

(4.28) Iv(x)I ~ . C135
a(l_X)a, ~

Furthermore, since v- 6M(d,a), and since and v coincide at

it follows that ( 1.3, Theorem 8.2] for al-i xE [0,1),

(4 .29) Iu (x) — v(x)I £C14N e

In view of (4.5), (4.6) and (4.10), it now follows that for all x E I O ,lI ,

(4.30) Iu (x) — (A 1 f(t ,u (t)))(x)I

£ Iv(x) + (A~~ f(t ,v(t))}(x)~ + C5Ium
(x) —

By (4.14), (4.27), (4.29) and (4.30) , it thus follows that for all

56(0,11

(4.29) IS~(z) I a 

~~~~ 
— u0(x)I c w 3/2 (t

~~~
4 

- 

— — -~~~~~~~~~~~~ -—-~~~~~~~ - - V .- - -~~ — -  ~~~~~~~~~~~~~~~~ - ~~- - -
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This completes the proof of Theorem 4.2.

Similarly, it may be shown that when using a a (2)1+1)2 point.

to obtain an approximate solution of a partial differential equation,

such as (3.15), the error is bounded by C16N
3/2e ’

~~ < ~c 6~
3I4,’v’

~~

Indeed, for the case of (3.15), we may take C16 
a 3. and ~ 

_ ,2

- -

-a- -.

- - 

_
•

~~~~~~~~~~~~
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